Abstract

Biocompatible luminophores based on organic dyes, which have fluorescence characteristics that are highly sensitive to the properties of the solvating medium, are of particular interest as highly sensitive, selective, and easy-to-use analytical agents. We found that BODIPY dimers (2,2'-, 2,3'-3,3'-CH2-bis(BODIPY) (1-3)) demonstrate fluorescence characteristics with a high sensitivity to the presence of polar solvents. The intense fluorescence of 1-3 in nonpolar/low-polarity solvents is dramatically quenched in polar media (acetone, DMF, and DMSO). It has been established that the main reason for CH2-bis(BODIPY) fluorescence quenching is the specific solvation of dyes by electron-donating molecules (Solv) with the formation of stable supramolecular CH2-bis(BODIPY)·2Solv structures. Using steady-state absorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and computational modeling, the formation mechanism, composition, and structure of CH2-bis(BODIPY)·2Solv supramolecular complexes have been substantiated, and their stability has been evaluated. The results show the promise of developing fluorescent probes based on CH2-bis(BODIPY)s for detecting toxic N/O-containing compounds in solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call