Abstract

The vibration spectra of 5-(methylthio)-1,3,4-thiadiazole-2(3H)-thione (MTTN) in acetonitrile (CH3CN), methanol (CH3OH) and water (H2O) solvents were collected and evaluated via deuterium isotopic substitution Raman spectroscopic experiments. These experiments were combined with the quantum chemical theoretical calculations using the PCM solvent model and normal mode analysis. The results confirmed that the MTTN in CH3CN, CH3OH and H2O have hydrogen bonding (H-bonding) MTTN(solvent)n clusters that produce significantly different Raman intensity patterns in different solvents. Combined with the normal Raman assignment, most resonance Raman spectra were assigned to the vibration modes of the H-bonding MTTN(CH3CN), MTTN(CH3OH)3 and MTTN(H2O)3 clusters in CH3CN, CH3OH and H2O. The theoretically-predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands. The intermolecular>NH⋯O and >NH⋯N H-bonding interactions are key constituents of stable thione structures in MTTN. This underlines the significant structural differences of MTTN in CH3CN, CH3OH and H2O. H-bonding perturbation of MTTN reveal important insights about the intermolecular excited state proton transfer (ESPT) reaction mechanisms in the Franck-Condon region structural dynamics of the thione→thiol tautomer in CH3OH and H2O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call