Abstract

Advanced chain-growth computer simulation methodologies have been employed for a systematic statistical analysis of the critical behavior of a polymer adsorbing at a substrate. We use finite-size scaling techniques to investigate the solvent-quality dependence of critical exponents, critical temperature, and the structure of the phase diagram. Our study covers all solvent effects from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures. The results significantly benefit from taking into account corrections to scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.