Abstract

During the last decade, hollow fiber liquid phase micro-extraction (HF-LPME) has become an attractive alternative in sample treatment for the analysis of trace metals in seawater. If compared with other similar methodologies, its main advantages are associated to a higher stability of the organic solution contained into the pores of the fiber, which acts as a lipophilic membrane during the extraction process. However there are some remaining problems that makes its use difficult, mostly related to the need of increasing the rate of analysis and improving portability.In this paper a novel three phase solvent bar micro-extraction (3PSBME) for the fiber device has been proposed. Its main advantage is that the 3PSBME device can be left free in the sample. This way the system is portable, and no special support is needed leading to the possibility of simultaneous extraction of several samples.In this work, multivariate central composite design of experiment has been carried out to optimize Ni pre-concentration using di-2-ethylhexyl phosphoric acid (DEHPA) as extractant and HNO3 as acceptor agent. Factors influencing extraction have been the pH in the sample and the fiber length. For seawater samples, Ni can be pre-concentrated 11 times in 140min. The method presents RSD 9.42% and limit of detection 44ngL−1, using GFAAS for instrumental determination. It has been applied for determination of Ni in seawater, including a reference material CRM-403 proving its applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.