Abstract

Bromine scavenging was used to measure rates of acid-catalyzed enolization of isobutyrophenone in H2O and in D2O solution and of isobutyrophenone-α-d in D2O solution. The results provide the solvent isotope effect kH +/kD + = 0.56 and the substrate isotope effect kH/kD = 6.2 on the enolization reaction, both of which are consistent with the generally accepted mechanism for this process. The present results in combination with literature information also provide the solvent isotope effect on the enolization equilibrium, KE(H2O)/KE(D2O) = 0.92, and the solvent isotope effect on the ionization of isobutyrophenone as a carbon acid, kaK(H2O)/kaK(D2O) = 5.4, as well as the product of isotopic fractionation factor and medium effect, [Formula: see text], for isobutyrophenone enol and the medium effect, Φ = 0.47, for its enolate ion. The isotope effect on KE is the first ever determined for the keto–enol equilibrium of a simple aldehyde or ketone; its near-unit value is consistent with expectation on the basis of fractionation factors for the species involved. Key words: isobutyrophenone, keto–enol equilibrium, carbon-acid ionization, solvent isotope effects, isotopic fractionation factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.