Abstract
The aggregation behavior of surface-active ionic liquids (SAILs) 1-dodecyl-3-methylimidazolium m- and p-hydroxybenzoate (m-C12mimHB and p-C12mimHB) in water and ethylammonium nitrate (EAN) was investigated. Surface tension measurements indicate that the cmc values of SAILs in EAN are much higher than those in water, resulting from the weaker solvophobic effect of EAN, and the stronger stability of SAILs/EAN complexes proven by DFT calculations. Compared to 1-dodecyl-3-methylimidazolium salicylate (C12mimSal), the effect of substituent position leads to weaker interactions between aromatic counterions and headgroups. The hexagonal liquid crystal (H1) phase formed by C12mimHB in water or EAN at a higher concentration was determined by polarized optical microscopy (POM), small-angle X-ray scattering (SAXS), and rheology techniques. Structural parameters estimated from SAXS curves suggest that the higher SAILs concentration or temperature leads to a smaller lattice parameter (a0) and a denser arrangement of cylinders. For C12mimHB, the formation of the H1 phase in H2O is easier than that in EAN. Furthermore, compared to C12mimSal, C12mimHB exists over a broad region of the hexagonal liquid crystalline (H1) phase, which is due to the different position of the substituents on the aromatic ring of counterions. Therefore, the H1 phase of the lypotropic liquid crystals (LLCs) formed in the C12mimHB/H2O system exhibits excellent performance in uniformly dispersing multiwalled carbon nanotubes (MWCNTs). Increasing the concentration of MWCNTs results in a larger lattice parameter (a0) value, indicating the integration of MWCNTs within the cylinders of the H1 phase. The rheological measurement results demonstrate that MWCNTs/LLCs composites are highly viscoelastic, and the presence of MWCNTs obviously strengthens the apparent viscosity of the H1 phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.