Abstract

Porous organic molecular (POM) materials can exhibit solvatomorphs via altering their crystallographic packing in the solid state, but investigating real gas mixture separation by porous materials with such a behavior is still very rare. Herein, we report that a lantern-shaped calix[4]resorcinarene-based porous organic cage (POC, namely, CPOC-101) can exhibit eight distinct solid-state solvatomorphs via crystallization in different solvents. This POC solvatomorphism has a significant influence on their gas sorption capacities as well as separation abilities. Specifically, the apparent Brunauer-Emmett-Teller (BET) surface area determined by nitrogen gas sorption at 77 K for CPOC-101α crystallized from toluene/chloroform is up to 406 m2 g-1, which is much higher than the rest of CPOC-101 solvatomorphs with BET values less than 40 m2 g-1. More interestingly, C2H2 and CO2 adsorbed capacities, in addition to the C2H2/CO2 separation ability at room temperature for CPOC-101α, are superior to those of CPOC-101β crystalized from nitrobenzene, the representative of POC solvatomorphs with low BET surface areas. These results indicate the possibility of adjusting gas sorption and separation properties of POC materials by controlling their solvatomorphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.