Abstract
Spin-transition compounds are coordination complexes that can present two stable or metastable high-spin and low-spin states at a given temperature (thermal hysteresis). The width of the thermal hysteresis (difference between the maximum and minimum temperature between which the compound exhibits bi-stability) depends on the interactions between the coordination complexes within the compound, and which may be modulated by the absence or presence of solvent within the structure. The new compound [Fe(3-bpp)2 ][Au(CN)2 ]2 (1, 3-bpp=2,6-di-(1H-pyrazol-3-yl)pyridine) was synthesized and its properties were compared with those of the solvated compound [Fe(3-bpp)2 ][Au(CN)2 ]2 ⋅2 H2 O (1.H2 O) already described. 1 has a two-steps thermal hysteresis of 45 K, in contrast to the compound 1.H2 O which exhibits a gradual conversion without hysteresis. This hysteretic transition is accompanied by a reversible reconstructive structural transition and twinning. This stepped behaviour is also observed in the photomagnetic properties despite the low efficiency of photoswitching. Single-crystal photocrystallographic investigations confirm this low conversion, which we attributed to the high energy cost to form the high-spin structure, whose symmetry differs from that of the low-spin phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.