Abstract

Absorption, fluorescence, and magic-angle pump−probe experiments characterize the solvatochromism and relaxation dynamics of three structurally related near-infrared tricarbocyanine dyes (HDITCP, IR125, and IR144) in solution. Agreement with solvatochromic theory is found in solvents where the conductivity approximately matches that predicted for complete ionic dissociation. The nonpolar solvatochromism of HDITCP and IR125 allows the polar solvatochromism of the IR144 absorption spectrum to be attributed to a specific functional group. Resonance structure arguments predict a dipole moment decrease upon electronic absorption by IR144, consistent with the observed solvatochromism. Assuming a point dipole, spherical cavity reaction field model, self-consistent feedback between the solvent and the polarizable IR144 solute accounts for 1/2 to 1/3 of the observed polar solvent shifts. A geometry change in the excited state leads to nearly nonpolar solvatochromism in the IR144 emission spectrum. Femtosecond magi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.