Abstract

For half a century, complexometric titrations of metal ions have been performed with water-soluble chelators and indicators that typically require careful pH control. Very recently, ion-selective nanosphere emulsions were introduced that exhibit ion-exchange properties and are doped with lipophilic ionophores originally developed for chemical ion sensors. They may serve as novel, highly selective and pH independent complexometric reagents. While ion optode emulsions have been demonstrated as useful indicators for such titrations, they exhibit a pH cross-response that unfortunately complicates the identification of the end point. Here, we present pH-independent optode nanospheres as indicators for complexometric titrations, with calcium as an initial example. The nanospheres incorporate an ionic solvatochromic dye (SD), ion exchanger and ionophore. The solvatochromic dye will be only expelled from the core of the nanosphere into the aqueous solution at the end point at which point it results in an optical signal change. The titration curves are demonstrated to be pH-independent and with sharper end points than with previously reported chromoionophore-based optical nanospheres as indicator. The calcium concentration in mineral water was successfully determined using this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.