Abstract

Potential distribution and coupling parameter theories are combined to interrelate previous solvation thermodynamic results and derive several new expressions for the solvent reorganization energy at both constant volume and constant pressure. We further demonstrate that the usual decomposition of the chemical potential into noncompensating energetic and entropic contributions may be extended to obtain a Gaussian fluctuation approximation for the chemical potential plus an exact cumulant expansion for the remainder. These exact expressions are further related to approximate first-order thermodynamic perturbation theory predictions and used to obtain a coupling-parameter integral expression for the sum of all higher-order terms in the perturbation series. The results are compared with the experimental global solvation thermodynamic functions for xenon dissolved in n-hexane and water (under ambient conditions). These comparisons imply that the constant-volume solvent reorganization energy has a magnitude of at most approximately kT in both experimental solutions. The results are used to extract numerical values of the solute-solvent mean interaction energy and associated fluctuation entropy directly from experimental solvation thermodynamic measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.