Abstract
We investigated solvation structures of I(-) and Na(+) on an aqueous solution surface by photodetachment spectroscopy and mass spectrometry. An aqueous solution of NaI was introduced into the vacuum as a continuous liquid flow (liquid beam), and the liquid beam was irradiated with a UV laser pulse. The abundance of electrons emitted by the laser excitation was measured as a function of wavelength (photodetachment spectroscopy). For a concentrated aqueous solution of NaI, we observe an absorption peak at longer wavelengths than the charge-transfer-to-solvent band of I(-) in solution. This feature is assigned to the photoabsorption of I(-) at the surface. This finding indicates that when the concentration of NaI is high (>1.0 M), I(-) exists on the solution surface. The identity of the ion clusters ejected from the liquid beam following selective laser excitation of I(-) on the surface or I(-) inside the solution was revealed by mass spectrometry. The mass spectra show that Na rich clusters are formed when I(-) inside the solution is excited, whereas Na rich clusters are hardly formed by the excitation of surface I(-). These findings lead us to conclude that Na(+) does not exist on the surface of the NaI aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.