Abstract

Organic carbonates are commonly used as electrolytes in commercial lithium-ion batteries. A detailed interpretation of the solvation structure and dynamics of the electrolyte around ions is necessary to understand the charge/discharge process in batteries. This work combines infrared absorption spectroscopy with quantum chemical calculations and molecular dynamics simulations to decipher the solvation structure of propylene carbonate, a cyclic carbonate, around the dissolved thiocyanate ion. Two dimensional infrared spectroscopy and polarization-selective pump probe spectroscopies have been utilized to extract the timescales of solvent fluctuation and the solute reorientational dynamics. The similarity in the slow timescales for the solute and the solvent dynamics signifies that similar processes control both dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call