Abstract
Dimethyl sulfoxide (DMSO) is a universal water-soluble solvent widely used in many biotechnological and medical applications, such as cells cryopreservation, and for the treatment of different human diseases (e.g. amyloidosis). Despite the great number of reported studies, the effects of DMSO on the physico-chemical properties of biological membranes are poorly understood. Often, these studies are limited to model membranes composed of phosphatidylcholines (PCs) and cholesterol (Chol). In this work, we explored the effect of DMSO on liposomes composed of the natural egg sphingomyelin (ESM) and Chol as raft-like model membranes.With a multi-technique approach we probe the structure and the thermal stability of ESM/Chol bilayer at different Chol mole fractions. In particular, we investigate the ESM-solvent interactions to clarify the role of DMSO in perturbing the solvating conditions of lipid vesicles and show that the addition of DMSO increases the thermal stability of vesicles. An increase of transition temperature, a decrease of both enthalpy and entropy as well as a decrease of the cooperativity of the gel to liquid phase transition are observed at 0.1 DMSO mole fraction. Fluorescence experiments with the probe Laurdan and FTIR spectra strongly indicate that DMSO exerts a dehydration effect on the membrane. Besides, FTIR measurements with tungsten hexacarbonyl, in combination with fluorescence data of the probe NBD-PE, indicate that DMSO promotes the formation of a highly packed membrane by reducing the thickness of the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.