Abstract

An elevated level of creatinine (CRN) is a mark of kidney ailment, and prolonged retention of such condition could lead to renal failure, associated with severe ischemia. Antioxidants are clinically known to excrete CRN from the body through urine, thereby reducing its level in blood. The molecular mechanism of such an exclusion process is still illusive. As the excretion channel is urine, solvation of the solute is expected to play a pivotal role. Here, we report a detailed time-domain and frequency-domain terahertz (THz) spectroscopic investigation to understand the solvation of CRN in the presence of two model antioxidants, mostly used to treat elevated CRN level: N-Acetyl-l-cysteine (NAC) and ascorbic acid (ASC). FTIR spectroscopy in the mid-infrared region and UV absorption spectroscopy measurements coupled with quantum chemical calculations [at the B3LYP/6-311G++(d,p) level] reveal that both NAC and ASC form HBonded complexes with CRN and rapidly undergo a barrier-less proton transfer process to form creatinium ions. THz measurements provide explicit evidence of the formation of highly solvated complexes compared with bare CRN, which eventually enables its excretion through urine. These observations could provide a foundation for designing more beneficial drugs to resolve kidney diseases..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.