Abstract

The solvation of the [UO(2)(NO(3))(CMPO)](+) and [UO(2)(NO(3))(2)(CMPO)(2)] complexes (CMPO = octyl(phenyl)-N,N-diisobutylmethylcarbamoyl phosphine oxide) is investigated by molecular dynamics in the "dry" and "humid" forms of a room temperature ionic liquid (IL) based on the 1-butyl-3-methylimidazolium (BMI(+)) cation and the hexafluorophosphate (PF(6)(-)) anion. The simulations reveal the importance of the solvent anions in "dry" conditions and of water molecules in the "humid" solvent. For the [UO(2)(NO(3))(CMPO)](+) complex, the monodentate vs. bidentate coordination modes of CMPO are compared, and the first solvation shell of uranyl is completed by 1-3 PF(6)(-) anions in the dry IL and by 2-3 water molecules in the humid IL, leading to a total coordination number close to 5. The energy analysis shows that interactions with the IL stabilize the [UO(2)(NO(3))(bi)(CMPO)(mono)](+) form (with bidentate nitrate and monodentate CMPO) in the dry IL and the [UO(2)(NO(3))(mono)(CMPO)(mono)](+) form (with monodentate nitrate and CMPO) in the humid IL. The extracted compound characterized by EXAFS is thus proposed to be the [UO(2)(NO(3))(mono)(CMPO)(mono)(H(2)O)(3)](+) species. Furthermore we compare the [UO(2)(NO(3))(2)(CMPO)(2)] complex in its associated and dissociated forms ([UO(2)(NO(3))(mono)(CMPO)(mono)](+) + CMPO + NO(3)(-)) and discuss the results in the context of uranyl extraction by CMPO to ionic liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.