Abstract

The solvation of tetramethylammonium chloride (Me4NCl) and tetra-n-butylammonium chloride (Bu4NCl) in water-acetonitrile mixtures was investigated by mass spectrometry of clusters isolated from the solution. As far as the positive ions are concerned, clusters composed of alkylammonium ions and acetonitrile molecules only were observed, even for mixtures with high water content. In contrast, for the negative ions, clusters composed of chloride with both water and/or acetonitrile molecules were observed. For the smaller system (Me4NCl) we performed quantum chemical calculations and molecular dynamics simulations. It was found that even though water is present in the solvation shell of Me4N+, only acetonitrile has a strong electrostatic interaction with the cation. Water molecules around Me4N+ form hydrogen bonds with other water molecules, and they interact with Me4N+ mainly via dispersive interactions. These results indicate that Me4N+ behaves like a hydrophobic solute. On the other hand, the interaction of Cl- with water and acetonitrile is of comparable strength and, in both cases, the electrostatic interaction dominates. Herein we demonstrate experimentally and theoretically that positive and negative ions give rise to characteristic solvation structures in mixed solvents: even a relatively small organic cation, such as Me4N+, exhibits a hydrophobic-like solvation shell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.