Abstract

The hydration process of potassium 5-hydroxypentanoyltrifluoroborate salt, K[C5H9BF3O2] and its 5-hydroxypentanoyltrifluoroborate [C5H9BF3O2]- anion have been studied by combining the experimental FT-Raman and ultraviolet-visible spectra in aqueous solution with hybrid B3LYP/6-311++G** calculations. Solvent effects have been considered with the self-consistent reaction field (SCRF) and solvation (SM) models. Here, the structures of [C5H9BF3O2].[H2O]n clusters of anion, with n from 1 to 5 implicit water molecules, were proposed in order to study the number of water molecules that could hydrate the anion. Calculations were performed in the gas phase and an aqueous solution to observe the effect of the medium on the dipole moment and volume values. Calculated solvation energies for all clusters were corrected by zero-point vibrational energy (ZPVE), non-electrostatic terms and by basis set superposition energy (BSSE). The dipole moment of salt in solution (10.19 D) suggests that the number of water molecules that could hydrate the anion vary between 3 and 4, in total agreement with the observed and predicted bands in the UV-Vis spectra for the salt and these two clusters in water between 180 and 400 nm. Comparisons among experimental and predicted Raman spectra show clearly the hydration effect because the bands attributed to OH, BF3 and C=O groups are shifted in solution, while, the predicted Raman spectra for all clusters in solution show strong changes in the intensities of many bands, in accordance with the corresponding experimental one. Evidently, the hydration occurs on the OH, BF3 and C=O groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.