Abstract

The theory of equilibrium solvation of polymers B by a relatively low molar mass solvent A, developed in the simplest form in Paper I, is used to explore some essential trends in basic thermodynamic properties of solvated polymer solutions, such as the equilibrium concentrations of solvated polymers AiB and free solvent molecules A, the mass distribution φ(AiB)(i) of solvated clusters, the extent of solvation of the polymer Φ(solv), the solvation transition lines T(solv)(φB(o)), the specific heat C(V), the osmotic second virial coefficient B2, phase stability boundaries, and the critical temperatures associated with closed loop phase diagrams. We discuss the differences between the basic thermodynamic properties of solvated polymers and those derived previously for hierarchical mutual association processes involving the association of two different species A and B into AB complexes and the subsequent polymerization of these AB complexes into linear polymeric structures. The properties of solvated polymer solutions are also compared to those for solutions of polymers in a self-associating solvent. Closed loop phase diagrams for solvated polymer solutions arise in the theory from the competition between the associative and van der Waals interactions, a behavior also typical for dispersed molecular and nanoparticle species that strongly associate with the host fluid. Our analysis of the temperature dependence of the second osmotic virial coefficient reveals that the theory must be generalized to describe the association of multiple solvent molecules with each chain monomer, and this complex extension of the present model will be developed in subsequent papers aimed at a quantitative rather than qualitative treatment of solvated polymer solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call