Abstract

The mechanism of solvation and stabilization of palladium nanoparticles in the 1,3-dimethylimidazolium tetrafluoroborate ionic liquid (IL) has been studied using a combination of density functional theory and molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanical (QM/MM) potentials. It is shown that the IL induces a strong polarization in Pd6 and Pd19 clusters, which were taken as computationally tractable models of palladium nanoparticles. The clusters have large induced dipole moments and, as a result, interact strongly with the IL. MD simulations demonstrate an accumulation of the IL layer of high density and a negative charge around the Pd6 and Pd19 clusters as a result of interactions with the anions of the IL. A single palladium atom does not show any noticeable preference for the positive or negative ions and interacts only very weakly with the IL, which can, to some extent, protect the palladium atom from the energetically favorable process of aggregation into Pd cl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.