Abstract
Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.