Abstract

In electrospray ionization (ESI) on a triple quadrupole mass spectrometer, benzydamine, a molecule with an N,N-dimethylaminopropoxyl side chain, showed a fragmentation pattern in Q1 scans that is dramatically different from the mass-selected collision-induced dissociation (CID) of its MH(+) ion. The N,N-dimethylimmonium ion, which dominates in Q1 scans at higher energies, is only a minor product in all CID spectra. By using a smaller model molecule, N,N,N',N'-tetramethyl-1,3-propanediamine, with the kinetic energy release measured for the corresponding reaction, we have demonstrated that an ion-neutral complex composed of the N,N-dimethylazetidine cation and a neutral counterpart is involved. When the ion-neutral complex intermediate evolves toward elimination to form the immonium ion, the transition state is stabilized by the neutral species. Solvation of the ion-neutral complex, which obstructs the separation of the two partners by the resulting tighter enclosure, facilitates the elimination by enhancing the stabilization of the transition state. Therefore, the prevalence of the immonium ion in Q1 scans was a result of solvation in the ESI source. In CID reactions, where the decomposing ions are mass-selected and thus solvation does not exist, the immonium ion was a minor product, and the separation of the ion-neutral complex became dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.