Abstract

The solvation free energies of five nucleic acid bases in [Cnbim]Br (where n = 2, 4, 6) ionic liquids (ILs) were computed using the Bennett acceptance ratio (BAR) method employing molecular dynamics simulations. The computed free energies using BAR were in agreement with other methods. The large and negative predicted free energies of the bases in ILs indicated that the bases were better solvated in the ILs rather than in water. Hydrogen bonding interactions between polar sites of the bases and ILs’ ions significantly contributed to the solvation mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.