Abstract

Solutions of lithium and 1-ethyl-3-methylimidazolium tetrafluoroborates ([emim][BF4]) in propylene carbonate (PC) were studied by the high-resolution NMR method on 1H, 7Li, 11B, 13C, and 19F nuclei. The degree of solvation of lithium ions was determined by measuring selfdiffusion coefficients by pulse-field-gradient spin echo NMR method on 1H, 7Li, and 19F nuclei. The hydrodynamic radii of solvated Li+ cations were estimated by the Stokes–Einstein equation. The model structures of the solvation complexes of Li+ ion with propylene carbonate molecules and BF 4 – anion and their associates with ionic liquid components were calculated in terms of the density function theory. The calculated values of the chemical shifts were compared with the experimental data. PC molecules were predominantly bound to the Li+ cation, while LiBF4–[emim][BF4]–PC (1: 4: 4) electrolyte had a maximum conductivity of 9.5 mS cm–1 at 24 °С compared to the compositions of a lower content of the solvent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call