Abstract
pKa's, proton affinities, and proton dissociation free energies characterize numerous properties of drugs and the antioxidant activity of some chemical compounds. Even with a higher computational level of theory, the uncertainty in the proton solvation free energy limits the accuracy of these parameters. We investigated the thermochemistry of the solvation of the proton in methanol within the cluster-continuum model. The scheme used involves up to nine explicit methanol molecules, using the IEF-PCM and the strategy based on thermodynamic cycles. All computations were performed at B3LYP/6-31++G(dp) and M062X/6-31++G(dp) levels of theory. It comes out from our calculations that the functional M062X is better than B3LYP, on the evaluation of gas phase clustering energies of protonated methanol clusters, per methanol stabilization of neutral methanol clusters and solvation energies of the proton in methanol. The solvation free energy and enthalpy of the proton in methanol were obtained after converging the partial solvation free energy of the proton in methanol and the clustering free energy of protonated methanol clusters, as the cluster size increases. Finally, the recommended values for the solvation free energy and enthalpy of the proton in methanol are -257 and -252 kcal/mol, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.