Abstract
S K-edge X-ray absorption spectroscopy (XAS) was performed on wild type Cp rubredoxin and its Cys --> Ser mutants in both solution and lyophilized forms. For wild type rubredoxin and for the mutants where an interior cysteine residue (C6 or C39) is substituted by serine, a normal solvent effect is observed, that is, the S covalency increases upon lyophilization. For the mutants where a solvent accessible surface cysteine residue is substituted by serine, the S covalency decreases upon lyophilization which is an inverse solvent effect. Density functional theory (DFT) calculations reproduce these experimental results and show that the normal solvent effect reflects the covalency decrease due to solvent H-bonding to the surface thiolates and that the inverse solvent effect results from the covalency compensation from the interior thiolates. With respect to the Cys --> Ser substitution, the S covalency decreases. Calculations indicate that the stronger bonding interaction of the alkoxide with the Fe relative to that of thiolate increases the energy of the Fe d orbitals and reduces their bonding interaction with the remaining cysteines. The solvent effects support a surface solvent tuning contribution to electron transfer, and the Cys --> Ser result provides an explanation for the change in properties of related iron-sulfur sites with this mutation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.