Abstract

The solvation dynamics for deoxygenated and oxygenated Vaska’s complex, bis(triphenylphosphene) iridium(I) carbonyl chloride, (deoxy-VC and oxy-VC) were characterized using two-dimensional infrared (2D-IR) spectroscopy in d6-benzene, chloroform, and DMF. The iridium-bound carbonyl was used as a probe of the static and dynamic chemical environments in each solvent system. The linear IR spectra of the complexes were consistent with CO frequency modulation through d−π* backbonding interactions. The deoxy-VC center frequencies were insensitive to the solvent type, but those of oxy-VC were sensitive to the surrounding solvent, presumably due to the indirect influence of the dioxygen ligand on the carbonyl vibrational frequency. The vibrational lifetimes of the VC carbonyls were consistent with intramolecular relaxation through the metal d–π orbitals. 2D-IR spectra were analyzed using the inverse centerline slope (CLS) as a representative of the normalized frequency–frequency correlation function. Multiexponent...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.