Abstract
We investigate the time scale for hydrated electron solvation as a function of the initial configuration of the electron/water system. The experiments employ various 2-pulse and 3-pulse femtosecond pulse sequences that allow for controllable preparation of the various optically excited and precursor states of the equilibrated hydrated electron. We observe that the conduction band electron, which is produced by detrapping of the hydrated electron, has the slowest time scale for electron solvation with an average solvation time constant of 400 fs. In contrast, the solvation dynamics are significantly faster for electrons that are produced in “pre-solvated” environments. These latter examples include the excited p-state of the hydrated electron and the precursor states involved in UV femtosecond multiphoton ionization of water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.