Abstract

The solvation dynamics of excess electrons in glycerol have been measured by the pump-probe femtosecond laser technique at 333 K. The electrons are produced by two-photon absorption at 263 nm. The change in the induced absorbance is followed up to 450 ps in the spectral range from 440 to 720 nm. The transient signals of electron solvation have been analyzed by two kinetic models: a stepwise mechanism and a continuous relaxation model, using a Bayesian data analysis method. The results are compared with those previously published for ethylene glycol (J. Phys. Chem. A 2006, 110, 175) and for propanediols (J. Phys. Chem. A 2007, 111, 4902). From the comparison, it is pointed out that solvation dynamics in glycerol is very fast despite its high viscosity. This is interpreted as the existence of efficient traps for the electrons in glycerol with low potential energy. The small shift of the absorption band of the excess electron indicates that the potential of these traps is very close to that corresponding to the fully solvated electron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.