Abstract
In previous installments it has been shown how a detailed analysis of energy fluxes induced by electronic excitation of a solute can provide a quantitative understanding of the dominant molecular energy flow channels characterizing solvation-and in particular, hydration- relaxation dynamics. Here this work and power approach is complemented with a detailed characterization of the changes induced by such energy fluxes. We first examine the water solvent's spatial and orientational distributions and the assorted energy fluxes in the various hydration shells of the solute to provide a molecular picture of the relaxation. The latter analysis is also used to address the issue of a possible "inverse snowball" effect, an ansatz concerning the time scales of the different hydration shells to reach equilibrium. We then establish a link between the instantaneous torque, exerted on the water solvent neighbors' principal rotational axes immediately after excitation and the final energy transferred into those librational motions, which are the dominant short-time energy receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.