Abstract

Proton transfer in a phenol-amine complex dissolved in polar molecule nanoclusters is investigated. The proton transfer rates and mechanisms, as well as the solvation of the complex in the cluster, are studied using both adiabatic and nonadiabatic dynamics. The phenol-amine complex exists in ionic and covalent forms and as the size of the cluster increases the ionic form gains stability at the expense of the covalent form. Both the adiabatic and nonadiabatic transfer reaction rates increase with cluster size. Given a fixed cluster size, the stability of the covalent state increases with increasing temperature. The proton transfer rates do not change monotonously with an increase in temperature. A strong correlation between the solvent polarization reaction coordinate and the location of the phenol-amine complex in the cluster is found. The ionic form of the complex strongly prefers the interior of the cluster while the covalent form prefers to lie on the cluster surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.