Abstract

A genus one curve defined over Q which has points over Qp for all primes p may not have a rational point. It is natural to study the classes of Q-extensions over which all such curves obtain a global point. In this article, we show that every such genus one curve with semistable Jacobian has a point defined over a solvable extension of Q

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.