Abstract
Solvable theories of 2D dilaton gravity can be obtained from a Liouville theory by suitable field redefinitions. In this paper we propose a new framework to generate 2D dilaton gravity models which can also be exactly solved in the semiclassical approximation. Our approach is based on the recently introduced scheme to quantize massless scalar fields coupled to 2D gravity maintaining invariance under area-preserving diffeomorphisms and Weyl transformations. Starting from the CGHS model with the new effective action we reestablish the full diffeomorphism invariance by means of an adequate family of field redefinitions. The original theory is therefore mapped into a large family of solvable models. We focus our analysis on the one-parameter class of models interpolating between the Russo-Susskind-Thorlacius model and the Bose-Parker-Peleg model. Finally we shall briefly indicate how we can extend our approach to spherically symmetric Einstein gravity coupled to 2D conformal matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.