Abstract

We introduce a method for obtaining new classes of free divisors from representations $V$ of connected linear algebraic groups $G$ where $\dim(G)=\dim(V)$, with $V$ having an open orbit. We give sufficient conditions that the complement of this open orbit, the "exceptional orbit variety", is a free divisor (or a slightly weaker free* divisor) for "block representations" of both solvable groups and extensions of reductive groups by them. These are representations for which the matrix defined from a basis of associated "representation vector fields" on $V$ has block triangular form, with blocks satisfying certain nonsingularity conditions. For towers of Lie groups and representations this yields a tower of free divisors, successively obtained by adjoining varieties of singular matrices. This applies to solvable groups which give classical Cholesky-type factorization, and a modified form of it, on spaces of $m \times m$ symmetric, skew-symmetric or general matrices. For skew-symmetric matrices, it further extends to representations of nonlinear infinite dimensional solvable Lie algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.