Abstract
We prove the existence of the very weak solution of the Dirichlet problem for the Navier—Stokes system with L 2 boundary data. Under the small data assumption we also prove the uniqueness. We use the penalization method to study the linearized problem and then apply Banach's fixed point theorem for the nonlinear problem with small boundary data. We extend our result to the case with no small data assumption by splitting the data on a large regular and small irregular part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.