Abstract

For a degenerate system of equations such as the equations of motion of immiscible fluids in porous media, we study the solvability of an initial–boundary value problem. Using the process of capillary imbibition of a wetting fluid as an example, we study a class of self-similar solutions with degeneration on the movable boundary and on the entry into the porous layer. The considered problem can be reduced to the analysis of properties of a nonlinear operator equation. For the classical solution of the original problem, we prove existence and uniqueness theorems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.