Abstract

A nonlocal boundary-value problem for the differential equation with weak nonlinearity and with differential operator B = (B 1, …, B p ), where \( {B}_j\equiv {z}_j\frac{\partial }{\partial {z}_j}\;\mathrm{and}\;j=1,\dots, p \) is considered. By using the Nash–Moser iterative scheme, the solvability conditions for the present problem in the Hilbert H¨ormander spaces of functions of many complex variables forming a refined Sobolev scale of spaces is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.