Abstract
We study the solvability of the second boundary value problem for a class of highly singular fourth order equations of Monge–Ampère type. They arise in the approximation of convex functionals subject to a convexity constraint using Abreu type equations. Both the Legendre transform and partial Legendre transform are used in our analysis. In two dimensions, we establish global solutions to the second boundary value problem for highly singular Abreu equations where the right hand sides are of q-Laplacian type for all \(q>1\). We show that minimizers of variational problems with a convexity constraint in two dimensions that arise from the Rochet–Choné model in the monopolist’s problem in economics with q-power cost can be approximated in the uniform norm by solutions of the Abreu equation for a full range of q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.