Abstract
This paper concerns the solvability of a nonlinear fractional boundary value problem at resonance. By using fixed point theorems we prove that the perturbed problem has a solution, then by some ideas from analysis we show that the original problem is solvable. An example is given to illustrate the obatined results.
Highlights
Boundary value problems (BVP) at resonance have been studied in many papers for ordinary differential equations (Feng and Webb 1997; Guezane-Lakoud and Frioui 2013; Guezane-Lakoud and Kılıçman 2014; Hu and Liu 2011; Jiang 2011; Kosmatov 2010, 2006; Mawhin 1972; Samko et al 1993; Webb and Zima 2009; Zima and Drygas 2013), most of them considered the existence of solutions for the BVP at resonance making use of Mawhin coincidence degree theory (Liu and Zhao 2007)
In a recent study Mawhin (1972), Nieto investigated a resonance BVP by an other approach, that we will apply to a fractional boundary value problem to prove the existence of solutions
The goal of this paper is to provide sufficient conditions that ensure the existence of solutions for the following fractional boundary value problem (P)
Summary
Boundary value problems (BVP) at resonance have been studied in many papers for ordinary differential equations (Feng and Webb 1997; Guezane-Lakoud and Frioui 2013; Guezane-Lakoud and Kılıçman 2014; Hu and Liu 2011; Jiang 2011; Kosmatov 2010, 2006; Mawhin 1972; Samko et al 1993; Webb and Zima 2009; Zima and Drygas 2013), most of them considered the existence of solutions for the BVP at resonance making use of Mawhin coincidence degree theory (Liu and Zhao 2007). In Guezane-Lakoud and Kılıçman (2014), Han investigated the existence and multiplicity of positive solutions for the BVP at resonance by considering an equivalent non resonance perturbed problem with the same conditions. He wrote the original problem u′′ = f (t, u) as u′′ + β2u = f (t, u) + β2u = g(t, u) under the conditions β∈. In a recent study Mawhin (1972), Nieto investigated a resonance BVP by an other approach, that we will apply to a fractional boundary value problem to prove the existence of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.