Abstract
We show the existence of uniformly locally attractive solutions for a nonlinear Volterra integral equation of convolution type with a general kernel. We use methods and techniques of fixed point theorems and properties of measure of noncompactness. We extend earlier results obtained in the context of integral equations of fractional order. We give new insights about a new and striking relation between the size of data and the fractional order $\alpha >0$ of the kernel $k(t)=t^{\alpha -1}/\Gamma (\alpha )$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.