Abstract

Semiconductor materials having direct band gaps that overlap well with the solar spectrum are important for a variety of applications in solar energy conversion and optoelectronics. Here, we identify the ternary chalcogenide In4SnSe4 as a direct band gap semiconductor having a band gap of approximately 1.6 eV. In4SnSe4, which contains isolated tetrahedral [SnIn4]8+ clusters embedded in an In–Se framework, was synthesized by precipitation from solution at 300 °C. The In4SnSe4 product consists of microwires having lengths of approximately 5–20 μm and widths of approximately 100–400 nm. Band structure calculations predict a direct electronic band gap of approximately 2.0 eV. Diffuse reflectance UV–visible spectroscopy qualitatively validates the predicted direct band gap, yielding an observed optical band gap of 1.6 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call