Abstract

The aim of this two-part paper is to investigate the stability properties of a special class of solutions to a coagulation–fragmentation equation. We assume that the coagulation kernel is close to the diagonal kernel, and that the fragmentation kernel is diagonal. We construct a two-parameter family of stationary solutions concentrated in Dirac masses. We carefully study the asymptotic decay of the tails of these solutions, showing that this behavior is stable. In a companion paper, we prove that for initial data which are sufficiently concentrated, the corresponding solutions approach one of these stationary solutions for large times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.