Abstract
The salt deposition and existence in the production system cause the lower size of the flowing system as tubing, fluctuated or unstable production problems, high wellhead pressure, and flowline pressure, plug the choke valve, wellhead, and flowline pipeline. It negatively affects production. Bir Seba Structure (BRS) field production has high salinity content in oil, due to pressure and temperature change through the production system the salt scaling is deposited to be solid salt. Salt deposition during production damages the surface equipment such as the choke valve, clogging the flowline to the central processing facility (CPF). It causes fluctuated problems in flow rate and pressure in the wells, even blocking the tubing and oil couldn’t flow to the surface. Reducing production and undertaking well shut-ins to remove salt deposits and repair equipment are factors contributing to decreased production. Therefore, finding urgent solutions to address salt deposition is crucial. Various methods have been employed to enhance production efficiency, such as the installation of water dilution pumps at the surface, and injecting water and chemicals for salt removal in tubing (e.g., bull heading, coil tubing). The present article focuses on the occurrence of salt deposition issues during production in Bir Seba Field, Blocks 433a & 416b, Algeria. The geological study conducted indicates that the deposition in the Hamra Quazite reservoir originates from a marine environment. The structural cross-section analysis reveals that the sealing salt Trriasis S4 zone acts as the reservoir's sealing zone for the HQ reservoir. Despite a minimal water cut content during production (less than 2%), continuous salt deposition occurs due to changes in reservoir pressure and temperature, high salinity content in oil production, and the presence of small amounts of water vapor from the reservoir. As a result, solid salt particles are transported with the oil to the surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.