Abstract

Avoiding aliasing in time-resolved flow data obtained through high fidelity simulations while keeping the computational and storage costs at acceptable levels is often a challenge. Well-established solutions such as increasing the sampling rate or low-pass filtering to reduce aliasing can be prohibitively expensive for large data sets. This paper provides a set of alternative strategies for identifying and mitigating aliasing that are applicable even to large data sets. We show how time-derivative data, which can be obtained directly from the governing equations, can be used to detect aliasing and to turn the ill-posed problem of removing aliasing from data into a well-posed problem, yielding a prediction of the true spectrum. Similarly, we show how spatial filtering can be used to remove aliasing for convective systems. We also propose strategies to prevent aliasing when generating a database, including a method tailored for computing nonlinear forcing terms that arise within the resolvent framework. These methods are demonstrated using a non-linear Ginzburg-Landau model and large-eddy simulation (LES) data for a subsonic turbulent jet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.