Abstract

We consider the solutions of the Guderley problem, consisting of a converging and diverging hydrodynamic shock wave in an ideal gas with a power law initial density profile. The self-similar solutions and specifically the reflected shock coefficient, which determines the path of the reflected shock, are studied in detail for cylindrical and spherical symmetries and for a wide range of values of the adiabatic index and the spatial density exponent. Finally, we perform a comprehensive comparison between the analytic solutions and Lagrangian hydrodynamic simulations by setting proper initial and boundary conditions. A very good agreement between the analytical solutions and the numerical simulations is obtained. This demonstrates the usefulness of the analytic solutions as a code verification test problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.