Abstract

We consider quasi-geostrophic (QG) models in two- and three-layers that are useful in theoretical studies of planetary atmospheres and oceans. In these models, the streamfunctions are given by (1+2) partial differential systems of evolution equations. A two-layer QG model, in a simplified version, is dependent exclusively on the Rossby radius of deformation. However, the f-plane QG point vortex model contains factors such as the density, thickness of each layer, the Coriolis parameter, and the constant of gravitational acceleration, and this two-layered model admits a lesser number of Lie point symmetries, as compared to the simplified model. Finally, we study a three-layer oceanography QG model of special interest, which includes asymmetric wind curl forcing or Ekman pumping, that drives double-gyre ocean circulation. In three-layers, we obtain solutions pertaining to the wind-driven doublegyre ocean flow for a range of physically relevant features, such as lateral friction and the analogue parameters of the f-plane QG model. Zero-order invariants are used to reduce the partial differential systems to ordinary differential systems. We determine conservation laws for these QG systems via multiplier methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.