Abstract

The Jimbo-Miwa equation is the second equation in the well known KP hierarchy of integrable systems, which is used to describe certain interesting (3+1)-dimensional waves in physics but not pass any of the conventional integrability tests. The Konopelchenko-Dubrovsky equations arose in physics in connection with the nonlinear weaves with a weak dispersion. In this paper, we obtain two families of explicit exact solutions with multiple parameter functions for these equations by using Xu's stable-range method and our logarithmic generalization of the stable-range method. These parameter functions make our solutions more applicable to related practical models and boundary value problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.