Abstract
We study the multi-dimensional Cauchy–Dirichlet problem for the p(x,t)-parabolic equation with a regular nonlinear minor term, which models a non-instantaneous but very rapid absorption with the q(x,t)-growth. The minor term depends on a positive integer parameter n and, as n→+∞, converges weakly⋆ to the expression incorporating the Dirac delta function, which, in turn, models an instant absorption at the initial moment. We prove that an infinitesimal initial layer, associated with the Dirac delta function, is formed as n→+∞, and that the family of regular weak solutions of the original problem converges to the so-called ‘strong-weak’ solution of a two-scale microscopic–macroscopic model. Furthermore, the equation of the microstructure can be integrated explicitly, which leads in a number of cases to the purely macroscopic formulation for the p(x,t)-parabolic equation provided with the corrected initial data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.