Abstract

This article considers the dynamic equation of a reduced model for thin-film micromagnetics deduced by A. DeSimone, R.V. Kohn and F. Otto in [A. DeSimone, R.V. Kohn, F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002) 1–53]. To derive the existence of weak solutions under periodical boundary condition, the authors first prove the existence of smooth solutions for the approximating equation, then prove the convergence of the viscosity solution when the viscosity term vanishes, which implies the existence of solutions for the original equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.