Abstract

A co-ordinate system consisting of the left-running characteristics (α = const.) and the streamlines (ϕ = const.) is used. The governing equations are derived in terms of α and ϕ for a two-dimensional steady supersonic rotational inviscid flow of a perfect gas. The equations are applied to the problem of an initially parallel supersonic rotational flow which expands around a convex corner. The velocity of the incoming flow at the wall is considered to be either supersonic (case 1) or sonic (case 2). For each case, solutions uniformly valid in the region near the leading characteristic and in the region near the corner, are found for the Mach angle and flow deflexion angle in terms of their values on the leading characteristic and at the corner. In case 2, a transonic similarity solution is found and composite solutions are constructed for each region. Comparisons are made with existing exact numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.